
AN ASSEMBLY THEORETIC PROOF OF DWW

SACHA GOLDMAN

These are notes for Alexander Kupers’ Simple Homotopy Week. They follow very closely the
paper of Raptis-Steimle [RS20]. This follows a talk discussing cobordism categories and introducing
the Dwyer-Wiess-Williams theorem.
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1. Topological Cobordism Categories

We want to work with not only the smooth manifold bundles, but also topological manifold
bundles

E
π−→ B.

To begin we will talk about topological cobordism categories.

1.1. Tangent Microbundles. To begin with, E does not have a tangent bundle because it is not
smooth, but it does have a tangent micro-bundle. If E were smooth we could view TE inside of
E × E as follows:

In the topological world we can still take a get a tubular neighbourhood of ∆E inside of E × E,
but now because it’s not smooth this is just a topological RdimE bundle over E, which we denote
TE. We can also build a vertical version T vE.

1.2. Tangential Structure. So as before we add a notion of tangential structure. Given a map
θ : X → BO(d)×B a θ-tangential structure on E → B is a map ℓ making the diagram

X

E BO(d)×B

(ξ,p)ℓ

(ε⊕TvE,π)
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commute. This is equivalent to a diagram

T vE V

E X

B

ξ

π
p

.

Where the top map is a map of vector bundle map. This we can generalize of E
π−→ B being topo-

logical manifolds, but now the top map is a map of microbundles, i.e. a fibrewise homeomorphism.

1.3. Cobordism Categories. Now we can define Cobδ(θ) have objects to be

E B × {a}× R+ × R∞

B B × {a}

π

with tangential structure as described. The morphisms are given by Cobordisms with tangential
structure which pullback appropriately along inclusion.

2. Bivariant Theories and the Categorified Index Theorem Theorem

2.1. Bivariant Theories. We define a category with BIV objects given by triples

V
ξ−→ X

p−→ B

as in the previous section. The morphisms in this category are harder to describe. Given a map
g : B′ → B we can pullback the bundles. Then a map (p′, ξ′, B′) → (p, ξ, B) is given by a map
(p′, ξ′) → g∗(p, ξ) over B′.

Definition 2.1. A bivariant theory with values in a category C is a functor BIV → C such that this
functor is homotopy invariant in both X and E.

This is bivariant in the sense that for a morphism on the base we get a contravariant map in the
target category, and for a morphism on the fibre we get a covariant map.

Example 2.2. The bivariant A-theory functor didn’t use anything about smoothness so it is still a
bivariant theory. This is a spectra valued theory

Example 2.3. Cobδ(−) is a bivariant theory with values in categories. As in the previous talk, this
can be upgraded from a bivariant theory BCob(−) with values in spaces.

2.2. Assembly and Coassembly. As described previously, for any bivariant theory C we have a

map ∇C : C → C
&

where C
&

is the best contravariantly exissive approximation to C, i.e. restrict

C over a point to get C and then extend to get C
&
. Further, this C has a excissive approximation

C
%

and there is an assembly map αC : C
% → C.

Remark 2.4. If F is contravariantly excessive with image in spaces or spectra, we can identify
F with the space or spectrum Γ(FB(X) → B). Examples of these kinds of section include the
A-theoretic Euler characteristic. This is why it makes sense to study A-theory as a bivariant theory
in our context.
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2.3. The Categorified Index Theorem.

Theorem 2.5. For bivariant theories C and D with values in spaces or spectra with and C is
excissive, then for any map of bivariant theories τ : C → D we have a commutative diagram

C D

C
&

(D̄%)& D
&

τ

∇C ∇D

τ% α&
D̄

.

Proof. Trivial. □

3. Recovering The Index Theorem

3.1. The Generalized Index Theorem. We will now construct a map of bivariant theories

τ : ΩBCob → A

to which we will apply the categorified index theorem. We will not go through the details of defining
this map but loosely it sends an n-tuple of composable d-dimensional coboridsms over B together
with their tangent bundle to their union over B.

To prove the generalized index theorem we will need the following as input.

Theorem 3.1 (Gomez-Lopez Kupers). The functor ΩBCob is excissive.

What Gomez-Lopez Kupers Prove. Loosely, it is proved that BCob(ξ) is naturally equivalent to a
spectrum B(ξ), a space which is a configuration space of manifolds with ξ tangential structure
embedded in high dimensional euclidian space. This is done by applying smoothing theory to
GMTW. □
Remark 3.2. Our understanding of this ΩBCob is not as good as in the smooth case, for example
we don’t understand the entire homotopy type.

Theorem 3.3. There is a commutative diagram

BCob A

BCob& (Ā%)& A
&

τ

∇BCob ∇D

τ% α&
D̄

.

Proof. Apply the categorified theorem. □
3.2. The Classical Index Theorem. We will now go through the somewhat arduous process of
recovering the classical theorem.

Corollary 3.4. For a bundle of topological manifolds E
π−→ B, there is a commutative diagram

A%
B

B AB(E)

αĀ
χ%(π)

χ(π)

.

Proof Sketch. Define θ = (T vE → E
π−→ B). We can identify χ(π) and χ%(π) as elements in

π0(A
&
(θ)) and π0((A

%
)&(θ)) respectively.

Post composing with α on sections is exactly the map (Ā%)&
α&

D̄−−→ A
&

in the above diagram. So
to prove the theorem all we need to do is product an element of π0(ΩBCob(θ)) and verify that the
diagram maps it to the correct place.
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We get a canonical manifold bundle given by θ itself and by taking the product of this bundle
with the interval we get a cobordism. We denote by [π] the associated element in π0(ΩBCob(θ)).
We just need to check that ∇A ◦ τ takes this to χ(π) (then we also get it for a point and thus we
will as get that τ% ◦ ∇BCob takes this to χ%(π)). Now τ([π]) is just E ⊔ E → E. Looking under
coassembly this gives exactly χ(π). □


