
Sacha Goldman The Hopf Fibration and π2(S
3)

Defining Higher Homotopy Groups + Introduction

As a set π1(X,x) is based homotopy classes of maps S1 → X such that 0 maps to x. We define πn(X,x) in the
same way, as homotopy classes of maps Sn → X sending some special point N to x.

To make this into a group, we do the same thing as for π1, that is we consider (Sn, N) as (In/∂In, ∂In/∂In)
then we can glue two cubes together along a pair of opposite faces, where the maps agree, to get another copy of
Sn and a map from it to X.

Unlike π1 these groups are abelian. To see this we can take our two connected copies of In and put them into
a bigger n-cube. We can map this to X using the maps we already have on the inner copies of In and map the
remainder to the point x. Then we can construct a homotopy by just moving one copy of In to the other face. This
also shows that it doesn’t matter which face we pick. We will leave out the base point from the notation today,
but it is always there implicitly.

The most basic non-contractible topological spaces are spheres, and so a question one might ask is what πn(S
k)

is. This question ends up being very hard, we don’t have a general answer, so we try to calculate specific cases.
We would like to calculate π3(S

2) and to do so we need some tools.

Fibre Bundles

A fibre bundle of fibre type F over a topological space B is a topological space E along with a map π : E → B
such that for b ∈ B we have π−1(b) ∼= F and also a neighbourhood U of b such that there is an isomorphism
ϕ : π−1(U) → U × F such that

π−1(U) U × F

U

ϕ

π
π1

commutes.

One example of a fibre bundle is the tangent bundle, here the fibre type is a vector space, but today we’re only
interested in viewing this vector space as a topological space.

Another example of a fibre bundle is a covering space X̃ → X where the fibre is a discrete set S discrete.

A Long Exact of Higher Homotopy Groups

If we have a fibre bundle we can include the base along on of the fibres, then we have the exact sequence F → E → B
in the category of pointed topological spaces. What that means is that the image of a map, is the kernel of the
next. In pointed spaces we consider the kernel to be points mapping to the marked point. This then becomes, and
we won’t go through the proof, a long exact sequence of higher homotopy groups

π3(F ) π3(E) π3(B)

π2(F ) π2(E) π2(B)

π1(F ) π1(E) π1(B)

π0(F ) π0(E) π0(B) 0

.
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For our example of coving spaces this becomes

π1(S) −→ π1(X̃) −→ π1(X) −→ π0(S) −→ π0(X)

making a short exact sequence giving us that π1(S) has |π1(X)/π1(X̃)| points.

The Hopf Fibration

First we construct a map q : C2\{0} → S2, to do this we map the map (z, w) to z/w and think about this as a
map to C ∪ {∞} ∼= S2. Then we have the diagram

C2\{0} S3

S2

q
h

.

We call the composition h the Hopf Fibration.

The Hopf Fibration makes S3 into a fibre bundle over S2. To see this, if we have a point in S2, we can think
of this as a point z in C using the map ϕ−1 so long as it isn’t the point ∞ (and if it is ∞ we could just rotate
our sphere first). Then we can look at the pre-image of z. Certainly (z, 1) is in the preimage of z under h and
then so is (z, 1)/ ||(z, 1)||, and this is actually in S3. The other points in S1 should all be multiples of this point
λ(z, 1)/ ||(z, 1)||, but these only lie in the sphere for |λ| = 1. The preimage of a any neighbourhood U of z is then
λ(w, 1)/ ||(w, 1)|| for λ ∈ S1 and w ∈ U , which we can just map to (λ, w) ∈ S1 × U to get our local trivialization.
This shows that the Hopf Fibration makes S3 into a fibre bundle of S2 with fibre type S1.

Today we are most interested in the Hopf Fibration as a fibre bundle, but it is of great interest in geometry
and the map h isn’t just continuous, but a Riemannian submersion. Now, if we steographically project from S3 to
R3 we get that the fibre circles remain circles in S3, except for the circle through the point of projection, which
becomes a line (or a circle through ∞). This covers R3 with non-overlapping circles, each of which is linked. It’s
not to hard to see using the trivialization above that latitudes on S2 become tori in R3.

Applying the Long Exact Sequence

Now we can put everything together, we have a way to relate higher homotopy groups given a fibre bundle, and
we have a fibre bundle in which everything is a sphere! Here we have the following long exact sequence.

π3(S
1) π3(S

3) π3(S
2)

π2(S
1) π2(S

3) π2(S
2)

π1(S
1) π1(S

3) π1(S
2)

π0(S
1) π0(S

3) π0(S
2) 0

.

We aim to fill in as much of this as possible, in order to calculate the π3(S
2) in the top right.

First, we can immediately fill all the π1’s using our knowledge of the fundamental group.

Second we can fill in the π0’s, these are all just 0 because all our spaces only have one path component.
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Next we turn our attention to the left hand column where we look to calculate πn(S
1) for n > 1. This is defined

to be homotopy classes of maps f : Sn → S1. Here we need to recall a theorem from covering spaces that says if
there is a map f : X → Y and Y has a universal cover Ỹ then the map f lifts to the universal cover of Y if and
only if it induces the 0 map f∗ : π1(X) → π1(Y ). Here since π1(S

n) = 0 we get that f∗ is automatically injective
so we get a lift

R

Sn S1
f

π
f̃ .

Because R is contractible we can take a homotopy of f̃ to a constant map F : Sn × I → R and then post compose
with π to get a homotopy of f to a constant map. This shows that πn(S

1) = 0 for n > 1.

The last big tool we’re going to need is the Freudenthal Suspension Theorem. This theorem says that for
i < 2n− 1 we get that πi(S

n) ∼= πi+1(S
n+1). Here this isomorphism is induced by the suspension map. We won’t

prove this, but no big tools are used in the proof, it is mostly just explicit reasoning with cells. If one doesn’t like
using this theorem we can always use Hurwitz theorem to compute π2(S

2), π3(S
3), and π2(S

3), but Freudenthal
allows us to avoid appealing to homology. With this theorem in hand we can compute one more group, we see that
π2(S

3) ∼= π1(S
2) ∼= Z.

Now if we look back on our exact sequence we have

0 π3(S
3) π3(S

2)

0 0 π2(S
2)

Z 0 0

0 0 0 0

.

Exactness here allows us to conclude that π2(S
2) = Z. Its worth considering this result for a moment. These maps

our classified by their degree, which intuitively is the number of times a generic point of the codomain S2 is covered
by the domain S2. One can think about the map from S2 to S2 wrapping the sphere around itself twice, under
the identification of π2(S

2) = Z this map becomes 2, one shouldn’t be too surprised to learn that this map is the
suspension of the map of the circle wrapping around itself twice.

Now, another application of Freudenthal allows us to calculate that π3(S
3) = π2(S

2) = Z. These maps our
again categorized by degree. Now our sequence becomes

0 Z π3(S
2)

0 0 Z

Z 0 0

0 0 0 0

.

Finally one last application of exactness allows us to conclude that π3(S
2) = Z, and it shouldn’t surprise you that

this group is actually generated by the Hopf Fibration.
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